ESP PCB/D and PCB/TN Series

Features and benefits

- Suitable for wave soldering 1
- Very low let-through voltage (enhanced protection to BS EN 62305) ~ between all lines - Full Mode protection
- Full mode design capable of handling partial lightning currents as well ~ as allowing continual operation of protected equipment
- Repeated protection in lightning intense environments
- Low in-line resistance minimises unnecessary reductions in signal strength
- 2 pin clean end and 3 pin line end to ensure correct insertion ~
- V ESP PCB/TN is suitable for telecommunication applications in accordance with Telcordia and ANSI Standards (see Application Note AN005)

Combined Category D, C, B tested protector (to BS EN 61643-21) for "through hole" mounting directly onto the PCB of data communication, signal or telephone equipment. Available for working voltages of up to 110V. ESP TN suitable for Broadband, POTS, dial-up, T1/E1, lease line and *DSL telephone applications. For use at boundaries up to LPZ 0_{A} to protect against flashover (typically the service entrance location) through to LPZ 3 to protect sensitive electronic equipment.

Installation

Connect in series, soldering pins direct onto PCB. Tracks to line and earth pins should be as wide as practical (see Furse Application Note AN003).

Electrical specification	ESP PCB/06D	ESP PCB/15D	ESP PCB/30D	ESP PCB/50D	ESP PCB/110D	ESP PCB/TN
Nominal voltage ¹	6V	15V	30V	50V	110V	-
Maximum working voltage Uc ²	7.79V	19V	37.1V	58V	132V	296V
Current rating (signal)			300	mА		
In-line resistance (per line ±10%)	9.4Ω	9.4Ω	9.4Ω	9.4Ω	9.4Ω	4.4Ω
Bandwidth (-3dB 50 Ω system)	800kHz	2.5MHz	4MHz	6MHz	9MHz	20MHz

¹ Nominal voltage (DC or AC peak) measured at <5µA (ESP PCB/15D, ESP PCB/30D, ESP PCB/50D, ESP PCB/110D) and <200µA (ESP PCB/06D).

² Maximum working voltage (DC or AC peak) measured at <1mA leakage (ESP PCB/15D, ESP PCB/30D, ESP PCB/50D, ESP PCB/110D), <10mA (ESP PCB/06D) and <10µA (ESP PCB/TN).

Transient specification	ESP PCB/06D	ESP PCB/15D	ESP PCB/30D	ESP PCB/50D	ESP PCB/110D	ESP PCB/TN
Let-through voltage (all conductors) ¹ Up						
C2 test 4kV 1.2/50µs, 2kA 8/20µs to BS EN/EN/IEC 61643-21	12.0V	25.0V	44.0V	78.0V	155V	395V
C1 test 1kV, 1.2/50µs, 0.5kA 8/20µs to BS EN/EN/IEC 61643-21	11.5V	24.5V	43.5V	76.0V	150V	390V
B2 test 4kV 10/700 μs to BS EN/EN/IEC 61643-21	10.0V	23.0V	42.5V	73.0V	145V	298V
5kV, 10/700µs²	10.5V	23.8V	43.4V	74.9V	150V	300V
Maximum surge current ³ D1 test 10/350µs to BS EN/EN/IEC 61643-21						
– per signal wire / per pair			2.5kA	V5kA		
8/20µs to ITU (formerly CCITT), BS 6651:1999 Appendix C						
– per signal wire / per pair			10kA/	/20kA		

¹The maximum transient voltage let-through the protector throughout the test (±10%), line to line & line to earth, both polarities. Response time <10ns.

² Test to BS 6651:1999 Appendix C, Cat C-High, IEC 61000-4-5:1995, ITU-T (formerly CCITT) K.20, K.21 and K.45, Telcordia GR-1089-CORE, Issue 2:2002,

ANSI TIA/EIA/IS-968-A:2002 (formerly FCC Part 68).

³The installation and connections external to the protector may limit the capability of the protector.

Mechanical specification	ESP PCB/D & PCB/TN Series
Temperature range	-25 to +70°C
Connection type	0.64mm (0.025") square PCB pins, 1.2mm diameter PCB holes recommended
Case material	ABS UL94 V-0
Dimensions	

30mm

Depth=20mm (~0.8") Weight=35g Pins are centrally positioned Pin 1 connects through to pin 3 Pin 2 connects through to pin 4

(Underside pin view)

furse

Combined Category D, C, B tested protector (to BS EN 61643-21) for "through hole" mounting directly onto the PCB of data communication, signal or telephone equipment which require a lower in-line resistance, an increased current or a higher bandwidth than the PCB/**D Series. Available for working voltages of up to 110V for AC & DC power applications up to 1.25A. For use at boundaries up to LPZ 0_{Δ} to protect against flashover (typically the service entrance location) through to LPZ 3 to protect sensitive electronic equipment.

Installation

Connect in series, soldering pins direct onto PCB. Tracks to line and earth pins should be as wide as practical (see Furse Application Note AN003).

Features and benefits

- Suitable for wave soldering
- Very low let-through voltage (enhanced protection to BS EN 62305) between all lines – Full Mode protection
- Full mode design capable of handling partial lightning currents as well as allowing continual operation of protected equipment
- Repeated protection in lightning intense environments
- \checkmark Very low (1 Ω) in-line resistance for resistance critical applications
- High (1.25A) maximum running current
- ✓ Higher bandwidth enables higher frequency data communications
- ✓ 2 pin clean end and 3 pin line end to ensure correct insertion

Electrical specification	ESP PCB/06E	ESP PCB/15E	ESP PCB/30E	ESP PCB/50E	ESP PCB/110E
Nominal voltage ¹	6V	15V	30V	50V	110V
Maximum working voltage Uc ²	7.79V	16.7V	36.7V	56.7V	132V
Current rating (signal)			1.25A		
In-line resistance (per line ±10%)			1.0Ω		
Bandwidth (-3dB 50Ω system)	1.5MHz	85MHz	85MHz	85MHz	85MHz

Nominal voltage (DC or AC peak) measured at <10μA (ESP PCB/15E, ESP PCB/30E, ESP PCB/50E, ESP PCB/110E) and <200μA (ESP PCB/06E).

² Maximum working voltage (DC or AC peak) measured at <5mA leakage (ESP PCB/15E, ESP PCB/30E, ESP PCB/50E, ESP PCB/110E), <10mA (ESP PCB/06E).

Transient specification	ESP PCB/06E	ESP PCB/15E	ESP PCB/30E	ESP PCB/50E	ESP PCB/110E
Let-through voltage (all conductors) ¹ Up					
C2 test 4kV 1.2/50µs, 2kA 8/20µs to BS EN/EN/IEC 61643-21	17.0V	39.0V	60.0V	86.0V	180V
C1 test 1kV, 1.2/50µs, 0.5kA 8/20µs to BS EN/EN/IEC 61643-21	11.5V	28.0V	49.0V	73.5V	170V
B2 test 4kV 10/700µs to BS EN/EN/IEC 61643-21	10.5V	25.5V	43.5V	65.0V	160V
5kV, 10/700µs²	10.8V	26.2V	44.3V	65.8V	165V
Maximum surge current ³ D1 test 10/350µs to BS EN/EN/IEC 61643-21					
– per signal wire / per pair			2.5kA/5kA		
8/20µs to ITU (formerly CCITT), BS 6651:1999 Appendix C					
– per signal wire / per pair			10kA/20kA		

¹ The maximum transient voltage let-through the protector throughout the test (±10%), line to line & line to earth, both polarities. Response time <10ns. ² Test to BS 6651:1999 Appendix C, Cat C-High, IEC 61000-4-5:1995, ITU-T (formerly CCITT) K.20, K.21 and K.45, Telcordia GR-1089-CORE, Issue 2:2002, MICI TA JULY TO SEE A 2002 (for the SEE

ANSI TIA/EIA/IS-968-A:2002 (formerly FCC Part 68).

³The installation and connections external to the protector may limit the capability of the protector.

Mechanical specification	ESP PCB/E Series
Temperature range	-25 to +70°C
Connection type	0.64mm (0.025") square PCB pins, 1.2mm diameter PCB holes recommended
Case material	ABS UL94 V-0
Dimensions	

Depth=20mm (~0.8") Weight=35g Pins are centrally positioned Pin 1 connects through to pin 3 Pin 2 connects through to pin 4

(Underside pin view)

+ 1

ESP PCB/E Series